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Abstract: - In terms of the present short-term load forecasting(STLF) methods, whether the linear or 
the nonlinear, neither could meet the STLF requirements better with the rapid developments of 
electrical power systems and electrical power markets, and so a novel STLF method was proposed 
based on fractal theory in this paper. Firstly, the paper investigated the fractal characteristics of power 
system loads based on fractal theory, then gave out the calculating method of the correlative 
dimension and embedded dimension according to G-P algorithm. Next, the paper discussed the C-C 
algorithm and revised it, and then used it to work out the time-delay. Finally, the paper established the 
STLF model and put into practice. The simulation results indicate that the proposed method possesses 
higher precision, and is an ideal STLF predictor. 
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1 Introduction 
Load forecasting is a very important work for power 
systems scheduling. Accurate short-term load 
forecasting (STLF) makes the generators start and 
stop more logically, the utilization of the resources 
more economically, and checking-repair plan more 
soundly, thus normal activities of the society 
production and life are ensured, and the economical 
and social benefits of electrical power enterprises 
are dramatically improved, the safe operation of the 
grids as well as scheduling is optimized. Hence, it 
possesses very important practical significance to 
research on STLF of electrical power systems.  

Investigations on STLF have already been a long 
history. The conventional STLF methods include 
regression analysis[1-3], trend extrapolation[4,5], 
and etc. The new methods, such as ANN[6-8], 
expert systems (ES)[9,10], gray prediction[11,12], 
fuzzy forecasting[13,14], and Support Vector 
Machines[15,16],  and some other new methods[17-
24], are reported in recent years. The characteristics 
of regression analysis and trend extrapolation are 
represented by structure simplicity, principle 
easiness, and forecasting speed rapidness. However, 
the methods encounter the larger difficulties in 
initializing the forecasting models, and moreover, 
the influences of the diverse factors have not been 
fully considered. ANN, ES, and some new methods 

possess many advantages, but still present the flaws. 
ANN exposes some flaws such as low learning 
speed, even so doesn’t converge sometimes. 
Compared with other methods, ES requires doing 
more working to construct ES knowledge base. 
However, to construct ES knowledge base is a 
difficult task. To change the situation, many 
scholars do their best to achieve many good 
predicting models, but all these models do a bit 
improvement on original ones only. The values of 
their practical applications are not too large, but the 
complexities of the models increase on and on. 
Later, one proposes the STLF models based on 
chaos theory [25-28]. It reconstructs the phase space 
through embedding dimension in one-dim time 
series, then STLF is implemented in phase space, in 
this way the forecasting results of the model are 
more creditable and reliable. However, chaos theory 
describes the change of the system phenomenon 
alone, but the geometry shape of the system is not 
considered, and the applications are for that limited. 
In view of the fact that fractal theory can consider 
the geometry shape of the system, and has close 
relationship with chaos theory [29-31], the paper 
therefore applies fractal theory to construct STLF 
model. Compared with other forecasting models, the 
results show that the model possesses higher 
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forecasting accuracy and better predicting behavior, 
and is a very ideal predictor. 

This paper is organized as follows: In section 2 
we introduce fractal theory foundation. In section 3, 
we discuss fractal analysis method, and analysis 
significantly G-P algorithm and C-C algorithm. In 
section 4, we investigate fractal characteristics of 
power systems load, and include self-comparability 
of power system loads under same space state, and 
self-comparability of power system loads under 
same time scale, and self-comparability of power 
system loads under diverse-time diverse-area scale. 
In section 5 based on fractal theory we present the 
STLF model. In section 6 we put the STLF model 
into practice, and compare the result with other 
methods. Eventually, the conclusion is summarized 
in section 7. 
 
 
2 Fractal Theory Foundation 
Fractal and Chaos theory are the two significant 
theoretical discoveries during interdisciplinary 
science investigation in the Twentieth Century. The 
thing that fractal theory considers is the representing 
structure of the system, while the thing that chaos 
theory investigates is the representing phenomenon 
of the system, that is, the phenomenon’s deepening. 
The two theories make people’s understanding on 
social phenomenon and natural law increase to a 
new stage. In recent years, fractal theory has been 
widely applied in physical chemistry, engineering, 
and economics and other fields, and the great 
achievements are acquired due to its stronger 
application background and use value. Below we 
mainly discuss fractal discrimination method. 
 
 
2.1 Fractal Dimension 
The thing that is described by Fractal dimension is 
how complex nonlinear systems evolve in size, or 
fill interspace. For fractal the evolution is 
implemented in space, and for time-series, the 
change is based on statistic significance. For the 
time-series with fractal characteristic, the relativities 
between data make each point congregate together 
slowly. But in fully random system, due to no 
relativities between data, each point could not get 
together. Fractal dimension is a very significant 
parameter of chaos systems, and is a constant 
parameter when chaos arresting cell varies, and is 
main tool for chaos investigation. Fractal dimension 
is differ from general integer dimension, it may be 
fraction. The common used fractal dimension has 
conjunction dimension, Hausdorff dimension, 

resemblance dimension, box dimension, and 
information dimension. 
 
 
2.2 Lyapunov Exponential 
Lyapunov exponential is used to scale the regular 
degree of complex kinetics. When Lyapunov 
exponential λ<0, then corresponding system is 
stable, and is insensitive to initial conditions, and 
conversely if λ>0, the corresponding system may be 
locally unstable, but at one time, the system is stable 
in whole, under this condition, chaos arresting cell is 
possibly formed to generate fractal. Hence, λ>0 may 
be seen as criterion of chaos behaviour. It must be 
pointed out that Lyapunov exponential λ>0 can 
distinguish out chaos system and no-chaos system, 
but can not tell out the extent of fractal 
characteristic[32,33]. 
 
 
2.3 Kolmogorov Entropy 
Kolmogorov entropy is an important parameter of 
fractal theory, and is a quantification index to weigh 
the fractal extent[34]. Kolmogorov entropy can 
depict out the degree of fractal to some extent. In 
other words, Kolmogorov entropy can determine out 
how large the confirmation of the system possesses 
in a system with confirmation and randomicity co-
existing. i.e., when Kolmogorov entropy K=0, and 
system is in rule movement; when K>0, and system 
is in chaos state; when K=∞, and system is in 
random pocomotion. Simultaneously, the 
predictability of the system is determined by the 
value of Kolmogorov entropy, i.e., the smaller the K 
value is, the lower the prediction of the system is. 
Kolmogorov entropy is calculated below. 
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where m is the embedded dimension, τ is the delay 
time, Cm(r) is the conjunction integral function. 
 
 
3 Fractal Analysis Method 
The properties of time-series of power system load, 
such as self-comparability, fractal dimension, and 
evolution behaviour, are investigated using G-P 
algorithm in the paper. Since G-P algorithm is 
proposed according to phase space reconstruction 
and embedded theory, below we firstly give a 
simple introduction to them. 
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3.1 State Space Reconstruction 
State space reconstruction, i.e., the recurrence 
process of fractal characteristic, means that 
isomorphic state space is constructed from single 
variable, thus origin system model may be 
constructed using an observing quantification. 

Let the n-dimensional autonomous dynamic 
system be expressed below. 
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where (x1, x2, …, xn) is the coordinates of state space 
of the system. After differential and eliminating 
(x2, …, xn), we then have 
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At the moment, the coordinates of state space are 

replaced by each order differential coefficient, and 
the original evolution information has not loss. 
Differential coefficient is calculated using time-
series value in diverse time as follow. 
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where τ is the delay time, x(t+τ)=x(t)+ τ. 

Similarly, 
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suchlike. 
According to Takens theorem, the relationship 

between the dimension Dm of the arresting cell and 
the embedded dimension n should meet 
 

n≥2Dm+1                            (5) 
 
 
3.2 G-P Algorithm Analysis 
 The above equation (5) gives out the lower limit of 
the embedded dimension n, but does not have upper 
limit, which makes it limited in applications. 
According to Whitehead’s embedding theory and 
Packing’s reconstructing phase space, P. 
Grassberger and I. Procaccis proposed the 
calculating way of fractal dimension from time-
series of data in 1983, and defined as G-P 

algorithm[35]. As the algorithm can work out the 
fractal dimension from one-dimension time-series, it 
has been wide applications in each field.  

For convenient analysis, let τ in (4) be 1, and 
x(t+(n-1)) be xn, we then get 1-dimensional time-
series as follows. 
 

nxxxx ,...,,, 321                        (6) 
 
where xi represents the observing value in the ith 
time. Now assume that these data are divided into 
several groups, and each group has m data, i.e., the 
embedded dimension is m. Then the data of the 1st 
group are y1=(x1, x2, … , xm), and y2=(x2, x3, … , xm+1) 
for the 2nd group, and likewise, we have 
 

Yi=(xi,xi+1,⋅⋅⋅,xm+i-1), i=1,2, ⋅⋅⋅,Nm          (7) 
 
According to (7), one-dimension time-series data in 
(6) is divided into Nm groups, and Nm =n-m+1, 
where each group data expresses a vector or a point 
in m-dimension space, and all the points constitute a 
subset J(m) in m-dimension Euclidean space Em. and 
the distance is defined between the points below. 
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where rij expresses the distance between yi and yj. 
Definition 1. Let C(r) be conjunction integral 
function described below. 
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where θ is Heaviside unit function described by 
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Let r→0, we then have  
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If D(m) is constant as m increases, then 
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where D2 is called as conjunction dimension. 
 
 
3.3 Time-delay τ Selection 
It is important to correctly select the time-delay τ 
and embedded dimension m during phase-space 
reconstruction. Generally, there are two kinds of 
viewpoints present, one viewpoint thinks that the 
selection on τ and m is unattached in theory each 
other, such as sequence correlation method, phase-
space expansion method, and plural self-correlation 
method, and etc. Another one thinks that the 
selection on τ and m is mutually attached, such as 
time-window method, C-C algorithm[36,37], they 
may work out τ and time window at the same time. 

C-C algorithm was proposed by H .S. Kim, R. 
Eykholt, and J. D. Salas in1999, it adopts the 
conjunction integral to estimate τ. Below let us 
make an introduction. 

For analysis simplicity, let t be time-delay, Eq.8 
can be rewritten below. 
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Now consider time-series x=(xi|i=1,2, ⋅⋅⋅, N), let 

t=1, we get single tiem-series itself, and t=2, we get 
x=(x1,x3, ⋅⋅⋅, xN-1) and x=(x2,x4, ⋅⋅⋅, xN), the sequence 
length is N/2. For any t, we have  
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where N=tl, l=N/t is sequence length. Below we 
define checkout statistic by 
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For each sub-sequence, we have 
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Let N→∞, we have 
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If the time-series are unattached and follow the 

same distribution, when N→∞, S2(m,r,t)=0 for all r. 

But in practice, N is usually not equal infinity, and 
so S2(m,r,t)≠0. Hence, the local maximal time-
interval may select the zero-point of S2(m,r,t), or the 
time-point which possess minimal discrimination 
for all r. To select the two r which correspond to the 
maximum and the minimum, we define 
 

{ } { }),,(min),,(max),( 222 trmStrmStmS jj −=∆   (19) 
 

Clearly, ∆S2(m, t) scales the deviation regarding 
r. Hence, the local maximal time should select the 
smaller value between zero-point of S2(m, r, t) and 
∆S2(m, t). Seen from the above analysis, the optimal 
time-delay should be the first local minimum of 
S2(m, r, t) and ∆S2(m, t). The problem is that how 
large N is required to get rational estimation on m, 
according to DBS statistic conclusion,  
 

Nmin≈102+0.4m                       (20) 
 
and 
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where σ is standard difference of time-series. 
Let m=2,3,4,5, and i=1,2,3,4, and then define 
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Then the optimal time-delay td is the zero-

pointing of (22) or the first local minimum of (23). 
Consider the two conditions, synthetically, we 
define the global minimum of 
 

)()()( 222 tStStS cor +∆=             (24) 

 
as the embedded window tw. 

According to the above method, we find it 
possesses flaws when calculating theτ. As in 
practice, the zero-pointing of (22) is not equal to the 
first local minimum of (23). If time-series has cycle 
T, then t=KT is zero-point of (22), simultaneously, it 
is also the global minimum of (24). This is 
inconsistent with the former description. In the 
paper we select the first local minimum of (23) as 
the optimal time-delay td. But when t=KT the 
equation (23) equals zero, and (23) still shows 
constantly increasing undulation with t increasing. 
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Table 1 Load values in full o’clock from 7th-Sep-2009 to 13th-Sep-2009 

Time 
2009.9.7

Mon 
2009.9.8 

Tue 
2009.9.9

Wed 
2009.9.10

Thu 
2009.9.11

Fri 
2009.9.12 

Sat 
2009.9.13

Sun 

00:00:00 19.65562 22.03054 19.50496 17.31560 18.40292 20.56363 17.91225

01:00:00 18.46718 20.03968 17.77087 16.75096 18.06091 19.01609 16.94366

02:00:00 17.58250 18.44542 16.11951 14.70013 14.77449 16.61128 14.76071

03:00:00 16.50782 17.23822 15.13741 13.86362 14.38104 15.47946 13.45124

04:00:00 16.31171 16.45588 15.32464 13.79082 14.53923 14.90607 13.23663

05:00:00 16.73845 16.98046 15.87528 14.74795 18.38729 15.43221 13.79529

06:00:00 20.42165 20.16048 19.11494 18.13952 19.92930 18.83209 15.06410

07:00:00 21.94692 21.94635 20.44828 19.74379 19.51349 19.91040 16.26883

08:00:00 23.09392 22.20051 20.23754 19.90303 21.63161 19.17505 15.49879

09:00:00 25.68276 24.27925 21.57800 21.40582 22.93236 19.53681 15.72068

10:00:00 27.01327 25.04792 22.05609 22.47287 23.96074 20.08721 16.46189

11:00:00 27.38191 25.03651 21.98844 23.22141 24.22040 20.57258 17.39085

12:00:00 27.59679 24.85070 22.65517 23.47164 24.26291 20.94662 17.92330

13:00:00 27.51493 24.06480 22.05525 22.37264 24.58419 20.29611 17.73231

14:00:00 26.52052 23.42715 21.79336 22.58452 24.33843 20.14876 17.79996

15:00:00 26.49043 24.01339 21.92775 22.83713 25.26148 20.25313 17.54841

16:00:00 27.42996 24.65630 22.77594 23.95268 25.56785 20.53909 18.25283

17:00:00 27.96801 25.44427 23.05518 24.12369 24.28073 21.51140 19.05809

18:00:00 26.07701 23.22383 22.07355 22.90213 24.11323 21.46275 19.03052

19:00:00 26.18509 24.00569 22.17559 23.20809 24.11323 21.54701 19.79276

20:00:00 26.69598 23.85331 22.15677 23.57331 24.11323 21.86266 19.79573

21:00:00 26.79810 23.52475 21.62288 22.85041 24.11323 21.67198 19.38401

22:00:00 25.52110 22.59386 19.58275 21.25477 22.64067 21.16397 18.54376

23:00:00 23.84008 21.00444 18.69471 19.91184 25.56778 19.35402 17.02838
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Table  2  Fractal dimension and K-entropy for every day in a week 

Time Mon Tue Wed Thu Fri Sat Sun 

D2 0.9724 0.97 1.0136 1.0533 0.9965 0.9601 1.0293 

K-entropy 0.4333 0.414 0.4275 0.4447 0.4428 0.4275 0.4139 
 
 

Table 3 Fractal dimension and K-entropy under same-space diverse-time scale 

Time Day Week Month 

D2 1.4701 1.7946 1.9196 

K-entropy 0．7330 0.1747 0.1673 

 
 

When td is larger, such high-frequency undulation 
can influence the selection of the first local minimum 
of (23). Hence, we require the improvement on C-C 
algorithm. 

Compared (16) with (17), for fixed m and r, when 
N→∞, they have same undulation rule as a whole. 
But as t=KT formula (17) equals zero. Hence here we 
replace (17) with (16) to calculate ∆S1(m,t), and find 
out the first local minimum of ∆S1(m,t) as the 
optimal time-delay td. 
 
 
4 Fractal Characteristic Analysis of 
Power System Loads 
According to power system loads characteristics and 
fractal theory, self-comparability of power system 
loads curve is investigated here under diverse time 
scales and diverse space states. Below we may take 
power system loads in a southern city for example, 
apply G-P algorithm to calculate the conjunction 
dimension and Kolmogorov entropy defined as K-
entropy. Table 1 shows the load values in full 
o’clock from 7th-Sep-2009 to 13th-Sep-2009, and the 
load unit is expressed using MWh. 
 
 
4.1 Self-comparability of Power System 
Loads Under Same Space State 
According to Table 1 and the former G-P algorithm, 
we may work out the fractal dimension and 
Kolmogorov entropy as shown Table 2. 

We analyses fractal characteristic of power 
system loads under same time and space scale above, 

below we analyses the fractal characteristic of power 
system loads under same space and diverse time 
scale. The calculating result is shown in Table 3. 

Seen from Table 2 and Table 3, fractal dimension 
and K-entropy of power system loads under same-
space same-time scale are comparatively stable, but 
with time increasing, fractal dimension of power 
system loads also increases, the reason is that time-
series data increase with time increasing, which leads 
to a increasing of fine degree of the arresting cell, 
consequently, fractal dimension increases. In 
addition, based on K-entropy, we can judge the 
operation of the system is in chaos state.  

In Table 3, Fractal dimensions and K-entropy of 
power system loads under same-space diverse-time 
scale are quit approximate. Hence, power system 
loads under same-space diverse-time scale are 
quit approximate. Hence, power system loads 
under same-area diverse-time scale may be 
considered as the relationship between the part 
and the whole. In other words, power system 
loads in same area possess self-com 
comparability in time scale. 
 
 
4.2 Self-comparability of Power System 
Loads Under Same Time Scale 
To expound self-comparability of power system 
loads further, we investigate under same-time 
diverse-space scale, we select power loads of the 
four different areas under same day to implement 
fractal analysis, the results are shown in Table 4. 
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Table 4 Fractal dimension and K-entropy under 
same-time diverse-space scale 

Area Huining Tangtai Shatang Guohui

D2 1.4392 1.1104 1.059 1.3263

K-entropy 0.6632 0.9077 0.906 0.6675

 
Known from Table 4, fractal dimension of power 

system loads under diverse-area same-time are very 
approximate. If power system loads in diverse areas 
are considered as the composition parts of power grid 
loads, then self-comparability exists between each 
part. If the areas are expanded, and seen as diverse 
grids, then diverse grids possess self-comparability. 
Simultaneously, K-entropy is larger than zero in 
Table 4, i.e., system locomotion is in chaos. 

 
 

4.3 Self-comparability of Power System 
Loads Under Diverse-time Diverse-area Scale 
In order to make out self-comparability of power 
system loads under diverse-time diverse-area 
scale, fractal analysis is done in different areas 
according to diverse time scale as shown in 
Table 5. 
 

Table 5 Fractal dimension and K-entropy under 
diverse-time diverse-space scale 

Area/Time Area A/hour Area B/Day Area C/Year 

D2 1.8142 1.7704 1.01 

K-entropy 0.2336 0.2662 0.2937 

 
Seen from Table 5, power system loads in 

diverse-area diverse-time scale possess definite self-
comparability, but it is worse compared with the 
former ones. Seen from fractal dimension, area A 
possesses the best self-comparability, and area B is 
better, and area B is the worst, which is resulted in 
by power system load data in diverse sample time. In 
addition, based on K-entropy, we can know that the 
system locomotion is neither irregular nor random. 
 
 
5 STLF Method Based on Fractal 

Theory 
To implement STLF using fractal theory, we require 
to use the measuring load data to reconstruct phase-

space. The evolutionary rule of the reconstructed 
phase-space can correctly reflect the change rule of 
time-series of power system loads. However in high-
dimensional interspace, it is difficult to model track, 
and the modelling error on nonlinear function is quite 
large. To resolve it we require selecting the k-nearest 
neighbour points from N states to implement the 
local prediction for the point to be predicted using 
linear regression method. Such disposal is doable for 
both the linear system and the nonlinear system. The 
concrete prediction steps are described as follows. 
1) To implement the pretreatment for the data of 
power system loads, i.e., to analyses whether the 
abnormal data and losing data exist in time-series 
data or not, and do corresponding disposal. 
2) To confirm the time-delayτ, conjunction 
dimension D2, and embedded dimension m of time-
series data. 
3) To reconstruct the phase-space corresponding to 
load time-series data. 
4) To find out the p-nearest neighbour points of the 
point xk to be predicted using Euclidean distance 
method. The number of the nearest neighbour points 
is influential on predicting accuracy. 
5) To calculate the weight value of each nearest 
neighbour point by 
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where a is a parameter, a=1; di is a distance between 
the point xk and the nearest neighbour point xki, 
dm=min(di, i=1,2,⋅⋅⋅,p). 
6) To implement the local linear fitting using the 
weighted 1-order local linear regression method 
described as follows. 
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where [a, b]T is estimated using the weight least 
mean square(LMS) described below. 
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To resolve partial differential coefficient on the 
two sides of (27), and after simplification, we get 
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According to (12), we may get the change of 
conjunction dimension D(m) along with m as shown 
in Fig. 3. Known from Fig. 3, when m>6, D(m) 
hardly changes along with m, and goes towards 1.897, 
and 1.9 approximately. Hence here we give m=6. 
According to (1), K-entropy equals 0.023 greater 
than zero, and so the system is in chaos. 

⎪
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1        (28) 

To resolve the a, b from (28), and substitute it 
into linear regression equation, we may then predict 
out load value of next time. 

 

 

 
 
6 Examples 
The load data come from one southern city in China 
in Sep-2009, whose load curve is shown in Fig.1.  

 

Fig. 3 Change trend curve of D(m) with m 
 

In this paper there are 696 load data to be applied 
in all, where 672 data are used to learn, the remained 
24 load data are used to test. According to C-C 
algorithm mentioned above, the time-delay τ is 
calculated as 4. After reconstructing phase-space we 
acquire a 6-dimensional phase-space. 

The current phase-point is the load value Y672 at 
23:0:0 o’clock on 28th-9-2009, now Y673 at 0:0:0 
o’clock on 29th-9-2009 requires to be predicted. 
According to section 5, we require to find out the k-
nearest neighbouring phase-point of Y672 to work out 
prediction. Here we let k=6, then we work out 
prediction for 29th-9-2009, and make a comparison 
with practical values as shown in Table 6,  where the 
error is calculated by 

Fig. 1 Load curve diagram 

Seen from the Fig. 1, the loads curve possesses 
self-comparability. According to (11), we get the 
relation curve between lnC(r) and lnr with fixed m as 
shown in Fig. 2 

 

 

%100
value_practical

valupractical__valuepredicting
error ×

−
=

e   (29) 

 
And the average relative error is calculated by 
 

error1error_relative_average ×=
N

               (30) 

 
After calculation, the average relative error is 

0.97%, i.e., the forecasting accuracy arrives at 90% 
above using fractal theory, the desired result is 
acquired. At the same time, we find the forecasting 
error on 29th-9 is inside 3%, and 60% error is in 
range of 1%, and some individual errors are larger as 

Fig. 2 Relationship curve between lnC(r) and lnr 
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Table 6  Load forecasting results at integral o’clock on 29th-9-2009 

Time Practical values 
(MWh) 

Predicting values
(MWh) 

Error(%) 
(MWh) 

00:00:00 20.72 20.56 0.77 

01:00:00 16.29 16.4 0.67 

02:00:00 15.53 15.39 0.89 

03:00:00 13.45 13.78 2.5 

04:00:00 13.41 13.52 0.76 

05:00:00 13.27 13.16 0.86 

06:00:00 13.69 13.93 1.74 

07:00:00 17.82 17.76 0.28 

08:00:00 19.64 19.79 0.76 

09:00:00 19.45 19.53 0.45 

10:00:00 20.57 20.42 0.71 

11:00:00 20.86 21.02 0.76 

12:00:00 20.92 20.75 0.83 

13:00:00 21.11 21.0 0.51 

14:00:00 20.05 20.06 0.04 

15:00:00 19.9 20.0 0.50 

16:00:00 20.01 19.83 0.9 

17:00:00 21.12 21.25 0.63 

18:00:00 21.41 21.16 1.15 

19:00:00 21.19 21.36 0.78 

20:00:00 21.15 20.94 0.98 

21:00:00 21.23 21.36 0.61 

22:00:00 21.38 21.2 0.82 

23:00:00 20.73 20.47 1.26 
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Table 7  Practical forecasting results of three kinds of methods 

Fractal  model  BP networks 
model 

RBF netwoeks 
model 

 
 

Time  

 
Practical 

value 
 (MWh)  

Prediction 
(MWh) 

Error 
(%) 

Prediction 
(MWh) 

Error 
(%) 

Prediction 
(MWh) 

Error 
(%) 

00:00:00  20.72  20.56  0.77  16.51  20.3  17.11  17.4  

01:00:00  16.29  16.40  0.67  16.05  1.47  15.78  3.13  

02:00:00  15.53  15.39  0.90  15.68  0.96  14.00  9.85  

03:00:00  13.45  13.78  2.45  13.46  0.07  13.40  0.37  

04:00:00  13.41  13.52  0.82  13.42  0.07  13.28  0.96  

05:00:00  13.27  13.16  0.82  12.66  4.60  14.24  7.30  

06:00:00  13.69  13.93  1.75  17.24  25.9  16.79  23.9  

07:00:00  17.82  17.76  0.33  20.41  14.5  18.83  5.66  

08:00:00  19.64  19.79  0.76  18.61  5.37  18.97  3.41  

09:00:00  19.45  19.53  0.45  21.09  8.43  20.41  5.39  

10:00:00  20.57  20.42  0.41  20.63  0.29  21.13  2.72  

11:00:00  20.86  21.02  0.76  21.15  1.39  21.64  3.73  

12:00:00  20.92  20.75  0.81  20.79  0.62  21.31  1.86  

13:00:00  21.11  21.00  0.52  20.20  4.31  20.18  4.40  

14:00:00  20.05  20.06  0.04  19.93  0.60  20.73  3.39  

15:00:00  19.90  20.00  0.50  19.80  0.50  20.65  3.76  

16:00:00  20.01  19.83  0.89  21.54  7.64  21.37  6.79  

17:00:00  21.12  21.25  0.61  22.19  5.06  21.52  1.89  

18:00:00  21.41  21.16  1.16  22.95  7.19  20.95  2.14  

19:00:00  21.19  21.36  0.80  22.73  7.26  20.52  3.16  

20:00:00  21.15  20.94  0.99  22.27  5.29  20.43  3.40  

21:00:00  21.23  21.36  0.61  21.77  2.54  19.54  7.96  

22:00:00  21.38  21.20  0.84  19.68  7.95  18.92  11.5  

23:00:00  20.73  20.47  1.25  18.90  5.29  18.52  10.6  
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Table 8  Statistic results of three kinds of methods 

Forecasting 

 model 

 Relative 

 error  

Minimum 

error 

Maximum

error  

Error 

<1%  

Error 

<3%  

Error 

>10% 

Fractal model 0.83%  0.04%  2.45%  83.3% 100%  none  

BP networks  5.87%  0.07%  25.9%  29.2% 42%  12.5%  

RBF networks 6%  0.37%  23.9%  8.33% 25%  16.6%  

 
 
history data are less which lead to larger distances 
between the nearest neighbouring points and it. 
With the increasing of the history data, the selection 
of the nearest neighbouring points can be improved, 
consequently, the forecasting accuracy is also 
improved. 

To illuminate the advantages of fractal 
forecasting, below we make a comparison with BP 
neural networks and RBF neural networks, 
respectively. Let the structure of BP networks be 
24-28-24, the transfer function in middle layer be S-
type, and one in output layer be also S-type, and the 
training time be 1000, and the aim error be 0.01, and 
learning rate be 0.1. Likewise, the structure of RBF 
is 24-10-24, and aim error is zero, and expansion 
speed is 0.4. Fig. 4 shows the simulation results of 
the above three kinds of methods. 
 

 
Fig. 4 Forecasting results of three kinds of the 

methods 

Table 7 shows the practical forecasting results of 
three kinds of methods, and Table 8 shows the 
statistics results of the three kinds of forecasting 
models. 

Seen from Table and Table 8, forecasting effects 
of fractal model are the best. Moreover, fractal 

forecasting does not require learning and samples 
selection, and is inexistent not to be able to 
converge, whose prediction speed is quicker, and 
ubiquity is stronger. 

In another example, we adopt the history load 
data between 1996 and 2008 in a China power grid 
Co. to implement the month load forecasting based 
on fractal forecasting model. Where there are the 
former 150 load data used to learn, and the latter 6 
data for test. With the same process we calculate the 
fractal dimension and K-entropy, and the embedded 
dimension, and the conclusion is achieved the 
system is in chaos. Below we let k=8, then month 
load on 7-2008 to 12-2008 is predicted as shown in 
Table 9. 

 
Table 9 Load forecasting results(106×MWh) 

Month 7 8 9 10 11 12 

Practice 21.67 22.61 19.78 12.57 23.27 25.72

Prediction 20.83 22.79 20.14 12.98 23.01 25.24

Error(%) 3.876 0.796 1.820 3.261 1.117 1.866
 
For convenient comparison, the number of the 

nearest neighbouring points is respectfully selected 
as 6 and 10 to make the same forecasting, the results 
are as shown in Table 10. 

 
Table 10 Load forecasting results(106×MWh) 

Month 7 8 9 10 11 12 

Practice 21.67 22.61 19.78 12.57 23.27 25.72
Prediction

(k=6) 20.41 22.87 20.27 13.34 22.83 24.96
Prediction

(k=8) 20.83 22.79 20.14 12.98 23.01 25.24
Prediction

(k=10) 20.38 22.92 20.24 13.22 22.94 24.17

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS Hongsheng Su

E-ISSN: 2224-266X 179 Issue 6, Volume 11, June 2012



Seen from Table 10, when the number of the 
nearest neighbouring points are selected as 8 the 
forecasting results are the most accurate, the larger k 
value such as 10 or the smaller k value such as 6 is 
selected, accordingly, the accuracy is lower, which 
indicates that the suitable k value to be selected can 
improve the forecasting precision. 

 
 
7 Conclusion 

The established STLF model based on fractal 
theory has higher forecasting precision and 
reliability than other nonlinear forecasting models, 
and can suit load forecasting demands for different 
area as long as we change the history data and the 
number of the nearest neighbouring points. It can be 
used by the power enterprises to guide their practice 
to improve their production efficiency and 
competitive power. It is particularly important that it 
may better meet the demand of TOU power price in 
power market, and save electric energy, and ensure 
safe reliability operation of power systems. The 
forecasting model presented in this paper can not 
only be applied in STLF, but also may be used in 
other similar cases, and possesses wide application 
prospect. 
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